Archive

Posts Tagged ‘Six sigma’

The Dice Game of “Velocity” – Part 1

November 22, 2010 54 comments

I have just finished reading “Velocity: Combining Lean, Six Sigma and the Theory of Constraints to Achieve Breakthrough Performance – A Business Novel” with my Kindle. The author Jeff Cox is the co-author of  “The Goal“. This time the story is about Amy, the newly named president of Hi-T Composites Company could not get any bottom line improvement after implementing Lean Six Sigma for a year. In the end, she convinced her team to combine TOC with LSS approach in order to achieve and exceed the bottom line goal.

A critical piece of the story is a dice game. It is this dice game that has finally got everyone on the same page, including the stubborn LSS guy Wayne to change his approach. A key insight is to abandon the balanced line approach at which Wayne has been working. The team finally has agreed on changing to an unbalanced production with everything synchronized to the bottleneck.

In the book, Amy was betting her career on this dice game to convince her staffs as well as to generate the same results in actual production. It worked out that way in the novel. But in practice, would you bet your career on a dice game? I cannot held to ask the following questions:

  • How repeatable are the results of the dice game  described in the novel? How sound is the statistics behind it?
  • How close is the game in resemblance to the reality of a production line? What are the limitations? Under what conditions would the TOC approach (Drum-Buffer-Rope) work better or worse?
  • Under what conditions does a balanced line with takt time work better or worse than an unbalanced line? How to quantify the variability in order to determine which approach to use?

The book has left these questions unanswered. That means these theories may or may not work at your reality. In order to better understand these questions, I intend to use simulation and analytic techniques to explore further. Stay tuned.

In Scenario 1, a balanced line is simulated with everyone starts with a single dice (same capacity) and the same 4 pennies (Initial buffer size).


In this simulation, WIP has increased from 20 to 26 by the 20th round and the total output is 62 pennies. This “throughput” number can be compared to the 70 pennies, which is the average dice point (3.5) times 20 rounds. 62 is in general less than 70 because of throughout lost as a result of variability.

In order to improve the performance of throughput, it was suggested to unbalance the line and create a constraint. Murphy is given only 1 dice while everyone else is then given 2 dices. The results look like the following:


This time WIP has increased from the initial 20 to 42 by te 20th round and total output is 81 pennies. This is significant throughput improvement but with a high WIP, especially around the bottleneck in front of Murphy.

In order to further improve the performance, a DBR (Drum-Buffer-Rope) method is introduced. In this case, Amy’s dices are being taken and she only releases pennies to the line according to the signal given by Murphy on what he rolls. In addition, Murphy is given a higher initial inventory buffer of 12 pennies.


This time WIP has actually decreased from 28 to 23 by the 20th round and the total output is at 91.

In the final case, the team discussed about improving the yield of at the bottleneck through Lean and Six Sigma. In order to simulate this, the dice roll of Murphy is mapped to number betweens 4 to 6.


The results indicated that WIP stayed low at 21 after 20 rounds, the throughput has been further improved 110.

It is shown that the simulation described in the book is generally repeatable. The logic behind these calculations can be nicely summarized with a G/G/1 queue and solved with Markov Chain analysis. We will discussed how practical are these results in application to real production line next time.

Advertisements

Golf Lessons from Lean, Six-Sigma and TOC

November 14, 2010 2 comments

After taking lessons from several coaches, I noticed some very fundamental differences between their approaches. My current coach is very good at giving a one point advice based on my swing. Although one day I would like to swing like Ernie Els, right now I am settled with my ugly swing and  happy to experience the notable score improvement after every lesson. That is quite different from the lessons that my friend took. His coach basically asked him to forget all he had learnt and tried to revolutionize his swing in order to take him to the next level. He is scared to go to the course now because he is stuck with a setback before he can get any better. He however believes that he is taking the necessary steps towards his goal of turning professional someday.

What are your long and short term goals and which approach is more suitable for you?

Lean:

You should focus on eliminating muda in your swing. Do not try to “push” the club head towards the ball but rather let a synchronized body turn to naturally “pull” the club head in order to achieve a smooth flow of your swing. The game of golf is a process of relentless continuous improvement. We do not generally recommend you to invest too much energy to your tools because dependence on such frequently undermines the development of the correct mindset. If you focus on improving every little piece, your efforts will eventually show up in your score and hence your handicap, which should not be your ends but means to the way of golf.

Six-sigma:

Golf is a game of consistency. You should hence focus on reducing variability of your swing. We have a set of statistical tools to measure the defects of your swing as well as scientific instruments to monitor and track your progress. You need to certify your skills from green to black belts. Through leveraging the right tools with scientific measurement and objective feedback, you will ultimately reduce your swing variability to under 6-sigma.

TOC (Theory of Constraint):

You can maximize the return of your practice time by focusing on identifying and improving the bottleneck. At every stage of your skill development, there is a constraint that determines the throughput of your entire game. At one point it may be the grip or the address or the swing plane or approach shot or putt … but the point is that the bottleneck moves. By identifying the bottleneck and concentrate on it, you will be able to get notable handicap reduction within the shortest time. While lean and six-sigma can get you closer to the “perfect” swing, TOC focused on optimizing what you have already got to quickly improve your score.

Whatever the approach you pick to improve your golf game or to help transform your manufacturing operations, you can benefit from applying technology that automatically records your current swing (or process) to then give you instant feedback on what to improve. In my opinion, there is no better example than golf to illustrate how your actual execution can be deceptive to the best intended plan.